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ABSTRACT

The assimilation of radar data into storm-scale numerical weather prediction models has been shown to be

beneficial for successfully modeling convective storms. Because of the difficulty of directly assimilating

reflectivity (Z), hydrometeor mixing ratios, and sometimes rainfall rate, are often retrieved from Z obser-

vations using retrieval relations, and are assimilated as state variables. The most limiting (although widely

employed) cases of these relations are derived, and their assumptions and limitations are discussed.

To investigate the utility of these retrieval relations for liquid water content (LWC) and ice water content

(IWC) in rain and hail as well as the potential for improvement using polarimetric variables, two models with

spectral bin microphysics coupled with a polarimetric radar operator are used: a one-dimensional melting hail

model and the two-dimensional Hebrew University Cloud Model. The relationship between LWC and Z in

pure rain varies spatially and temporally, with biases clearly seen using the normalized number concentration.

Retrievals using Z perform the poorest while specific attenuation and specific differential phase shift (KDP)

perform much better. Within rain–hail mixtures, separate estimation of LWC and IWC is necessary. Pro-

hibitively large errors in the retrieved LWC may result when using Z. The quantity KDP can be used to

effectively retrieve the LWC and to isolate the contribution of IWC to Z. It is found that the relationship

between Z and IWC is a function of radar wavelength, maximum hail diameter, and principally the height

below the melting layer, which must be accounted for in order to achieve accurate retrievals.

1. Introduction

The prospect of explicitly modeling and predicting

convection is relatively recent, only beginning to be

explored within the past 25 years (Droegemeier 1990;

Lilly 1990). Lilly (1990) cited the upcoming Weather

Surveillance Radar-1988 Doppler (WSR-88D) radar

network, which would be deployed and operational over

the next few years, as the key observing system toward

making this possible. Doppler radar is the only source of

data of sufficient spatial and temporal resolution to fully

resolve convective systems in time and space, and as

such is one of the primary sources of information for

assimilation when modeling convection. Many studies

have shown that the assimilation of radar reflectivity

factor, hereafter reflectivity (Z), in conjunction with

radial velocity (Vr), can help reduce the spinup time for

storms (e.g., Xue et al. 2003; Dawson and Xue 2006; Hu

et al. 2006a; Dowell et al. 2011; Gao and Stensrud 2012)

and has the potential to provide a positive impact on

subsequent forecasts (e.g., Tong and Xue 2005; Dawson

and Xue 2006; Hu et al. 2006a,b; Gao and Stensrud 2012;

Xue et al. 2013).

Owing to recent developments and successes in

convective-scale modeling (i.e., on the order of a few

kilometers or less), the National Severe Storms Lab-

oratory in Norman, Oklahoma, is leading the devel-

opment of a Warn-on-Forecast paradigm (Stensrud

et al. 2009, 2013), requiring the use of high-resolution,
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convection-resolving models that can rapidly assimilate

radar data and be used in real time. As such, efficient

and effective assimilation of radar data is an emerging

research frontier.

While the assimilation of Vr into models is relatively

well established (e.g., Gao et al. 2004), developing an

optimal method for utilizing Z in models remains com-

paratively challenging. In addition to issues regarding

data quality control and uncertain error statistics, a

primary source of uncertainty in the assimilation of Z is

the need to link Z and model state variables so that a

direct comparison can be drawn and the assimilation

process can occur. Two paradigms currently exist for

doing this: retrievals and forward operators.

Forward operators are used to convert model vari-

ables to observed ones in order to form observation in-

crements. Many observation operators of varying

complexity exist for calculating simulated radar variables

from hydrometeor mixing ratios (q) and the parameters

of model-predicted particle size distributions (PSDs)

(e.g., Smith et al. 1975; Tong and Xue 2005; Jung et al.

2008; Ryzhkov et al. 2011). These operators are used by

assimilation methods including the ensemble Kalman

filter (EnKF; Evensen 1994), which has gained in-

creasing attention in recent years due to its success in

effectively assimilating radar data and forming accurate

storm-scale analyses (e.g., Tong andXue 2005; Xue et al.

2006; Aksoy et al. 2009; Dowell et al. 2011; Dawson et al.

2012; Jung et al. 2012), as well as some implementations

of variational methods (e.g., Gao and Stensrud 2012).

In contrast, retrievals refer to the process of obtaining

unobserved variables from observed variables. For Z,

this means retrieving either rainfall rate (R) for quan-

titative precipitation estimation applications or, more

typically for assimilation, q. This method is currently

used by many ‘‘cloud analysis’’ systems, such as the

Advanced Regional Prediction System’s (ARPS; Xue

et al. 2003) Cloud Analysis (e.g., Zhang et al. 1998;

Zhang 1999; Brewster 2002; Hu et al. 2006a), and in

some variational methods in which the minimization of

the cost function is found with respect to a hydrometeor

control variable (e.g., Sun and Crook 1998; Wu et al.

2000; Xiao and Sun 2007).

Forward operators have the advantage of having

model-predicted microphysical parameters to use in the

calculation of Z, which, given an accurate forward op-

erator, should provide a reliable estimate of model Z

(although improving upon forward operators is itself an

active area of ongoing research). Retrievals present a

more difficult problem as nonlinearity in the forward

operator for Zmay result in a nonunique solution of the

retrieved microphysical parameters. As such, various

assumptions (discussed further in section 2) may be

required to constrain the problem in order to retrieve q

from a singlemeasurement ofZ. However, despite these

limitations, positive impacts from using retrievals to

assimilate Z have been found in the form of reduced

spinup time and forecast error (e.g., Souto et al. 2003;

Dawson and Xue 2006; Hu et al. 2006a; Zhao and Xue

2009; Schenkman et al. 2011a). These improvements,

together with computational efficiency, have resulted in

the continuing widespread use of retrieval equations in

modeling and radar assimilation studies (e.g., Hu and

Xue 2007; Kain et al. 2010; Stensrud and Gao 2010;

Schenkman et al. 2011b; Xue et al. 2014; Dawson et al.

2015; Chang et al. 2016). Given their ubiquity but

potential issues, the primary focus of this paper will

be examining the utility and consequences of em-

ploying retrieval equations under the most restrictive

assumptions.

The summer of 2013 saw the completion of the dual-

polarization upgrade for the national WSR-88D radar

network. Radar polarimetry capitalizes on the principle

that nonspherical particles scatter incoming electro-

magnetic energy differently for different polarization

planes, from which information about scatterer charac-

teristics can be inferred. The benefits of polarimetry are

wide reaching and include updraft detection (Brandes

et al. 1995; Kumjian andRyzhkov 2008; Picca et al. 2010;

Kumjian et al. 2012, 2014; Snyder et al. 2015), improved

rainfall estimation (Ryzhkov et al. 2005b), and hydro-

meteor classification algorithms (HCAs; Lim et al. 2005;

Park et al. 2009; Snyder et al. 2010; Al-Sakka et al. 2013;

Thompson et al. 2014), which generally employ fuzzy-

logic qualifiers (Liu andChandrasekar 2000; Straka et al.

2000). Unfortunately, despite these benefits, the mod-

eling community has yet to truly capitalize on the

availability of polarimetric radar data.

Among the variables that polarimetry offers are the

differential reflectivity (ZDR) and specific differential

phase shift (KDP). The quantity ZDR (dB) is the loga-

rithmic ratio of the backscattered power at the hori-

zontal and vertical polarizations (Seliga and Bringi

1976) with a value of 0 dB for isotropic scatterers and,

generally, positive values for oblate particles. The

quantity ZDR is 1) sensitive to hydrometeor orientation,

composition, and density; 2) unaffected by hydrometeor

concentration; and 3) proportional to the median par-

ticle size in a volume for particles with axis ratios that

vary as a function of size, such as raindrops (which be-

come increasingly oblate with size; e.g., Thurai et al.

2009). The quantity KDP (degrees per kilometer) mea-

sures the rate at which a phase difference accumulates

between the horizontally and vertically polarized waves

due to the slowing of the horizontally polarized wave

relative to the vertically polarized wave in anisotropic
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particles such as raindrops. It is immune to isotropic

scatterers and has been explored extensively for miti-

gating hail contamination in quantitative precipitation

estimation (e.g., Balakrishnan and Zrnić 1990; Aydin

et al. 1995). For a further review of radar polarimetry,

seeDoviak andZrnić (1993), Zrnić andRyzhkov (1999),

and Kumjian (2013a,b,c).

In addition to the variables directly measured, dual-

polarization data can be used to estimate specific

attenuation at horizontal polarization, AH, which is diffi-

cult to do using single-polarization radars. Specific at-

tenuation is the rate at which power is lost from the

emitted wave and is particularly attractive for the esti-

mation of both the rain mixing ratio (qr) and R as it is a

lower-order moment of the drop size distribution (DSD)

than Z and therefore much less sensitive to variability of

the DSD. The quantity AH is also independent of radar

miscalibration and partial beam blockage (Ryzhkov

et al. 2014).

Improved estimates of R over the traditional use of

R(Z) is one of the primary benefits of polarimetry and has

already seen much use. A multitude of polarimetric re-

lations for estimating R have been described throughout

the literature, including R(Z, ZDR) (e.g., Seliga and

Bringi 1976; Seliga et al. 1981), R(KDP) (e.g., Ryzhkov

et al. 2005a; Cifelli et al. 2011), R(Z, Nw) (Testud et al.

2001; Tabary et al. 2011), and, more recently, R(AH)

(Ryzhkov et al. 2014). The normalized drop concentra-

tion Nw (Testud et al. 2001) is given by

N
w
5

44

pr
w

LWC

D4
m

, (1)

whereDm is the volume-weightedmean diameter (equal

to the ratio of the fourth to the third moment of the

DSD) and LWC is the liquid water content. The quan-

tity Nw represents the intercept parameter for an expo-

nential size distribution with an equivalent Dm and

LWC regardless of actual DSD shape. For the case of the

Marshall–Palmer DSD (in which Nw 5 N0r), log10Nw ’
3.9. Tropical rain with DSDs skewed toward smaller

drops features high values of Nw whereas rain from

strong continental convection with DSDs skewed to-

ward larger drops features low values of Nw (Bringi

et al. 2003).

Although polarimetric R retrievals have successfully

improved upon R(Z) retrievals, the need for similar,

more sophisticated relations for retrieving LWC and

ice water content (IWC) for assimilation still exists.

Little work has been done in assimilating hydrome-

teor retrievals using dual-polarization data. Wu et al.

(2000) attempted to use ZDR to help partition Z for

retrieving qr and qh, but found difficulty in achieving

an accurate forecast, presumably due to insufficient

microphysics. More recently, Li and Mecikalski

(2010), using single-moment warm rain microphysics,

examined the impact of assimilating qr(Z, ZDR)

using a relation derived fromUlbrich and Atlas (1984)

and found a positive impact on the resultant forecast.

In a follow-up study, the assimilation of qr(Z) was

compared to that of both qr(Z, ZDR) and qr(ZDR, KDP)

using relations from Bringi and Chandrasekar (2001). It

was found that assimilating qr(ZDR,KDP) resulted in the

best forecast, highlighting the potential benefits of as-

similating polarimetric data.

This paper will use numerical models to examine the

utility of the most simplified version of commonly used

retrieval equations for rain and hail and the potential for

both spectral bin microphysics and polarimetry to offer

improvements for those cases. Section 2 will provide a

review of the current retrieval equations and their im-

plicit assumptions. Alternative relations for retrieving R

and qr will be discussed in section 3. Section 4 will de-

scribe the two spectral bin microphysics models used in

this study. The evolution in space and time of retrieved

rain biases will be presented in section 5, while the

separate estimation of rain and hail in rain–hail mixtures

will be examined in section 6. Section 7 will provide a

summary of conclusions as well as a discussion of

future work.

2. Summary of existing retrieval equations

The mixing ratio of hydrometeor x, qx, is propor-

tional to the third moment of the size distribution and

is given by

q
x
5

r
x

r

p

6

ð‘
0

D3N(D) dD , (2)

where r is the air density, rx is the hydrometeor density,

D is the particle equivalent spherical diameter, and

N(D) is the particle size distribution of x. The rainfall

rate (flux) R expressed in mmh21, is given by

R5 6p3 1024

ð‘
0

D3y(D)N(D) dD . (3)

If using the relation for raindrop fall speed, y(D), pro-

posed by Atlas and Ulbrich (1977),

y5 3:778D0:67 (4)

it is seen that R is proportional to the 3.67th moment of

the size distribution.

The radar reflectivity factor is defined most gen-

erally as
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Z5
l4

p5jK
w
j2
ð‘
0

s(D)N(D) dD , (5)

where l is the radar wavelength, jKwj2 (’0.93) is the

squared dielectric factor related to the dielectric con-

stant for water «w by

jK
w
j2 5

�����(«w 2 1)

(«
w
1 2)

�����
2

, (6)

and s(D) is the radar cross section of a particle of sizeD,

given by

s(D)5 4pjs(D)j2 , (7)

where s(D) is the backscattering amplitude of a particle

of size D. For the special case where particles are as-

sumed to be spherical and the resonance parameter <,
given by

<5
D

ffiffiffiffiffiffij«jp
l

, (8)

is less than approximately 0.3–0.4, the Rayleigh ap-

proximation can be invoked. In this approximation, the

backscattering amplitude of a particle is equal to

s(D)5
1

2

p2D3

l2

(«
x
2 1)

(«
x
1 2)

(9)

so that the radar reflectivity for rain is equal to

Z5

ð‘
0

D6N(D) dD (10)

or, more generally for hydrometeor species x,

Z
x
5

jK
x
j2

jK
w
j2
ð‘
0

D6N(D) dD . (11)

For most existing retrieval equations, as in most

single- or double-moment bulk microphysics schemes,

an exponential size distribution, described by

N
x
(D)5N

0x
exp(2L

x
D) , (12)

where N0x is the intercept parameter and Lx is the slope

parameter of x, is generally assumed for all hydrometeor

species. Using this size distribution and employing the

gamma function, Eq. (11) can be expressed as

Z
x
5N

0x

jK
x
j2

jK
w
j2
G(7)

L7
, (13)

where

L
x
5

�
r
x
pN

0x

rq
x

�0:25

. (14)

Substituting Eq. (14) into Eq. (13), the Z–q relation can

be expressed most generally as

Z
x
5

7:23 1020
jK2

x j
jK2

wj
(rq

x
)1:75

p1:75N0:75
0x r1:75x

, (15)

where Zx is in units of mm6m23.

Equation (15) is the general form of the forward op-

erator equations used in many studies to calculate sim-

ulatedZ (e.g., Tong and Xue 2005; Dowell et al. 2011) as

well as for retrievals. Further assumptions are often

made depending on the microphysics scheme being

used. If double-moment microphysics are used, N0x is

allowed to vary, which significantly improves the util-

ity of these equations for retrievals. In practice, the ex-

isting N0x field from a previous model forecast can be

used, potentially limiting further assumptions to only

those pertaining to hydrometeor density and wetness.

Additionally, a diagnosedN0x from a constrained qx–N0x

relation (Zhang et al. 2008) based on the results of

simulations with double-moment microphysics can be

used with single-moment microphysics and has recently

been tested with the ARPS Cloud Analysis with en-

couraging results (Wainwright et al. 2014; Pan et al.

2016). However, for the typical case of single-moment

microphysics, or during an initial assimilation cycle in

which background estimates of N0x are not available,

N0x is fixed at a constant value. It is these most limiting

cases, and the consequences of the assumptions therein,

that are investigated in this study and discussed below.

For rain, N0r is usually assumed to be fixed at 8 3
106m24 (Marshall and Palmer 1948), rr is equal to

1000kgm23, and Kr 5 Kw, resulting in a retrieval

equation for rain of

Z
r
5 3:633 109(rq

r
)1:75. (16)

For snow, different equations may be used if the snow

is dry above the melting level or wet below the melting

level. For dry snow, the dielectric constant must be

modified from that of pure ice to account for its de-

creased density from the inclusion of air. Smith (1984)

presents two formulations for this seen throughout the

literature. In the first formulation (e.g., Tong and Xue

2005), the particle diameter represents that of dry snow

and jKij2 is equal to that for solid ice, 0.17, resulting in a

dielectric factor of snow of
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jK
s
j2 5 jK

i
j2
�
r2s
r2i

�
. (17)

In the second formulation (e.g., Dowell et al. 2011; Gao

and Stensrud 2012), the particle diameter is the equiv-

alent diameter of the particle if it were entirely melted.

In this case, jKij2 must be adjusted to account for this

decreased diameter and instead takes the value 0.21,

denoted by jKi*j2. The dielectric factor of snow now

becomes

jK
s
j2 5 jK

i
*j2
�
r2s
r2w

�
. (18)

Assuming rs5 100kgm23 andN0s5 33 106m24 (Gunn

and Marshall 1958),

Z
s
5 9:803 108(rq

s
)1:75 (for T# 08C). (19)

For melting snow, the surface of the snow is assumed

to be wet with jKsj2 5 jKwj2 . Otherwise, following a

similar procedure as dry snow,

Z
s
5 4:263 1011(rq

s
)1:75 (for T. 08C). (20)

Finally, for hail, it is commonly assumed that N0h 5
4 3 104m24 (Federer and Waldvogel 1975), rh 5
900kgm23, and with jKhj2 adjusted in an analogous

manner to Eq. (18). This results in the retrieval equation

for (dry) hail of

Z
h
5 4:333 1010(rq

h
)1:75. (21)

This set of simplified retrieval equations exhibit limi-

tations of varying validity due to the assumptions made

in deriving them. The most restrictive assumption is

fixing N0x to be constant for the presumed exponential

size distributions of all species. For rain, Kessler (1969)

described this assumption as one that ‘‘does some vio-

lence to the physics of the evaporation process,’’ and

Sun (2005) noted that it is ‘‘not trivial to quantify’’ the

error induced by such an assumption. Any canting with

respect to vertical that particles may experience is ne-

glected. The assumption of constant density may be a

poor one for ice hydrometeors, particularly for rs, which

generally varies nearly inversely with diameter with a

mass–diameter relation for snow having a diameter ex-

ponent closer to 2 than 3 (e.g., Brandes et al. 2007), re-

sulting in an approximate D4 dependence for Z from

snow rather than a D6 dependence. The density of hail

and graupel may also vary from that of pure ice as they

may be spongy and contain air cavities, and may be ei-

ther wet or dry below the melting layer depending on

whether meltwater seeps inside to fill the voids (Dowell

et al. 2011). Additionally, by invoking the Rayleigh ap-

proximation, resonance scattering from large hydro-

meteors is neglected and subsequently any dependence

on radar wavelength or nonsphericity is excluded.

However, it should be noted that efforts have beenmade

in some studies (e.g., Dowell et al. 2011) to approximate

the effects of resonance scattering by exponentiating a

modified retrieval equation for wet hail to 0.95, based on

the work of Smith et al. (1975) and given by

Z
h
5

"
7:23 1020(rq

h
)1:75

p1:75N0:75
0h r1:75h

#0:95

5 6:133 1010(rq
h
)1:6625.

(22)

Hereafter, the phrase ‘‘legacy retrieval equations’’ will

specifically refer to this set of simplified equations.

Implementing the legacy retrieval equations may re-

quire additional assumptions. Typically, the radar data

are first interpolated to the model grid and quality

controlled. If mixed-phase microphysics are being used,

the problem of determining which species to retrieve is

underdetermined for volumes with multiple species and

only one Z measurement. To combat this, the existing

background species can be used or, in the absence of any

background species (e.g., in a noncycling mode), hy-

drometeor species can be determined based on empiri-

cal observations using temperature (e.g., to differentiate

rain and snow) and Z (e.g., for identifying hail) thresh-

olds. Once the dominant species has been established,

multiple species may also be retrieved by partitioning

the Z according to empirical rules involving environ-

mental variables (e.g., a linear ramp from wet snow to

rain between 08 and 58C). The q for each species is then

retrieved from Z using equations such as Eqs. (16), (19),

(20), and (21), and can be directly inserted (as in the

ARPS Cloud Analysis, predicated on the belief that

radar observations are more accurate than the model

predicted q) or assimilated variationally or otherwise.

In the following sections, LWC and IWC (both in

gm23) are used in place of qr and qh (and qg, where

noted) due to convention, differing only by a factor of r.

3. Alternative relations for rain

To investigate the use of dual-polarization data for

improving LWC retrievals and to review the utility of

polarimetric R relations, a large two-dimensional video

disdrometer dataset from Oklahoma in pure rain was

used. The data were collected over a 7-yr period in

Oklahoma and contain 47 144 unique 1-min DSDs from

both stratiform and convective rainfall. Following

Ryzhkov et al. (2014), polarimetric radar variables at S

(l 5 11.0 cm) and C band (l 5 5.3 cm) for each DSD
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were computed at 208C assuming a 108 width of the

canting angle distribution (with a mean of 08) and using

the axis ratio relation specified by Brandes et al. (2002).

Full details of the disdrometer dataset can be found in

Schuur et al. (2001). These derived retrieval equations

were found by performing weighted least squares re-

gressions on the median of each variable within bins of

log10(R) and log10(LWC) ranging from 21.2 to 2.0

and 22.2 to 1.0, respectively, in intervals of 0.1. Each

bin was weighted by the center R or LWC within the

bin multiplied by the number of points within that bin.

The goal of deriving retrieval equations forR and LWC

using the disdrometer data was to investigate the in-

herent usefulness of various polarimetric variables for

rain retrievals, as each derived retrieval equation was

found using the same method and dataset. A summary

of all of these derived retrieval equations, along with

their root-mean-square errors (RMSEs), are shown in

Table 1.

Figure 1 is a Taylor diagram1 (Taylor 2001) examining

the utility of these derived retrieval equations for bothR

and LWC at S and C band. For both LWC and R at both

wavelengths, retrievals using only Z perform the worst,

with the largest RMSE, standard deviation, and lowest

correlation with the disdrometer dataset. At S band, the

LWC(Z, Nw) and R(Z, Nw) retrievals show the best

performance. The retrievals of LWC(Z, Nw) are also

good at C band, while the error for R(Z, Nw) at C band

is a bit larger owing to resonance scattering complicating

the Z–R relationship for larger raindrops.

In practice, however, the use of Nw may not be ideal.

Estimates of Nw can be obtained from dual-pol data

using the so-called ‘‘Z2 ZDR’’ method (Illingworth and

Thompson 2005; Tabary et al. 2011), and estimates of

median volume diameterD0, which is quite close toDm,

can be found via ZDR (e.g., Gorgucci et al. 2002; Cao

et al. 2008), which can then be used to retrieve the LWC.

However, accurate estimation of Nw requires high-

quality, well-calibrated radar measurements of the in-

trinsic Z and ZDR, which can become difficult at shorter

wavelengths owing to attenuation. Additionally, to

achieve estimates ofZ andZDR with sufficient accuracy,

the Z 2 ZDR method requires the use of multiple con-

secutive gates, resulting in a lower spatial resolution for

Nw. Owing to potential difficulties in using Nw, alter-

native relations should also be considered. Second to

LWC(Z, Nw), LWC(AH) exhibits the smallest RMSE at

S band, while LWC(KDP) exhibits the smallest RMSE at

C band (although it also suffers from inferior resolution

compared to the other polarimetric retrieval methods).

For R retrievals, R(AH) retrievals feature the smallest

RMSE at S band while at C band R(KDP) has the

smallest RMSE. For both LWC and R at both wave-

lengths, retrievals incorporating ZDR improve upon

those using Z alone but perform less well relative to the

other polarimetric retrievals presented. The perfor-

mance for LWC(Z, ZDR) and R(Z, ZDR) retrievals will

likely be even poorer in areas dominated by rain derived

from melting hail and graupel, which tends to feature

large drops with largeZDR that falls even farther outside

TABLE 1. Retrieval relations for LWCandR at both S- andC-band fromdisdrometer data, alongwith the root-mean-square error (RE),

Pearson correlation coefficient (r), and standard deviation (s) of each relation, where LWC is in gm23,R is in mmh21,Z is linear in units

of mm6m23, ZDR is linear and unitless, Nw is in m23 mm21, KDP is in 8 km21, and AH is in dB km21.

S band C band

No. Relation RE r s No. Relation RE r s

LWC observations — — 0.39 LWC observations — — 0.39

1 LWC(Z) 5 1.74 3 1023Z0.640 0.28 0.82 0.49 6 LWC(Z) 5 1.593 1023Z0.657 0.53 0.67 0.69

2 LWC(KDP) 5 2.24K0:725
DP 0.17 0.91 0.41 7 LWC(KDP) 5 1.27K0:714

DP 0.16 0.92 0.40

3 LWC(AH) 5 115A0:917
H 0.13 0.96 0.43 8 LWC(AH) 5 11.0A0:777

H 0.40 0.78 0.61

4 LWC(Z, ZDR) 5 1.3331023Z0:696Z20:981
DR 0.20 0.89 0.44 9 LWC(Z, ZDR) 5 1.2931023Z0:701Z20:790

DR 0.32 0.80 0.52

5 LWC(Z, Nw) 5 1.1631024Z0:550N0:411
w 0.05 0.99 0.40 10 LWC(Z, Nw) 5 1.5131024Z0:572N0:363

w 0.16 0.94 0.45

R observations — — 8.36 R observations — — 8.36

11 R(Z) 5 1.9431022Z0:692 5.07 0.87 10.05 16 R(Z) 5 1.7231022Z0:714 11.69 0.68 15.60

12 R(KDP) 5 46.9K0:794
DP 2.67 0.95 8.59 17 R(KDP) 5 25.0K0:777

DP 2.46 0.96 8.30

13 R(AH) 5 3380A0:995
H 2.34 0.97 9.23 18 R(AH) 5 243A0:826

H 7.83 0.81 12.90

14 R(Z, ZDR) 5 1.6031022Z0:738Z20:912
DR 3.33 0.93 8.80 19 R(Z, ZDR) 5 1.6331023Z0:731Z20:399

DR 8.68 0.75 12.91

15 R(Z, Nw) 5 2.6831023Z0:638N0:295
w 1.48 0.99 8.80 20 R(Z, Nw) 5 2.3731023Z0:654N0:301

w 5.04 0.90 11.01

1 Taylor diagrams are useful for assessing overall performance of

models compared to a reference dataset (in this case, disdrometer

observations). The thick solid black line represents the standard

deviation of the observations (sobs), with 0.5sobs and 1.5sobs de-

noted in dashed lines. Pearson correlation coefficient is shown as a

function of angle a. RMSE values are shown in concentric thin gray

rings centered at the observation point at the bottom of the plot

(black dot), which corresponds to an RMSE of 0.0, a correlation of

1.0, and the standard deviation of the dataset. For example, LWC

(AH) at S band has a correlation coefficient of 0.96, a s of 0.43, and

an RMSE of 0.13 gm23, and is seen with a red star above and

slightly to the right of the observation point.
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of the typical Z 2 ZDR parameter space. Overall, with

the exception of KDP, all retrievals perform worse at C

band than S band and for increasing RMSE exhibit

higher standard deviations and lower correlations.

The above relations have been derived for the case of

pure rain. In the case of a mixture of rain and hail, dif-

ferent relations must be used as both LWC and IWC

must be estimated separately. To investigate this, spec-

tral bin models were used that explicitly treat LWC and

IWC separately. Additionally, such models allow the

explicit estimation ofNw, providing guidance regarding the

potential errors introduced by using the legacy LWC(Z)

and R(Z) relations. These models are described in the

next section.

4. Description of spectral bin models used

Two spectral bin models were used to investigate the

polarimetric characteristics of rain and hail as they relate

to the legacy retrieval equations: a one-dimensional

melting hail model (hereafter 1D-M) and the Hebrew

University Cloud Model (HUCM). Unlike bulk micro-

physical parameterizations, in which some characteristics

of the hydrometeor size distributions are prescribed a

priori and the size distributions are restricted to a certain

form [often an inverse exponential distribution, as in Eq.

(12), or more generally a gamma distribution] and evolve

as a whole, models with spectral bin microphysics divide

the hydrometeor size distributions into different size bins

that are treated independently, allowing for the better

representation of processes that depend on differences in

particle behavior along the size spectrum (e.g., aggrega-

tion) and therefore a more natural evolution of the size

distribution than is allowed in bulk parameterizations.

Owing to the prohibitive computational expense required

for spectral bin microphysics, they have been limited to

research applications while bulk microphysics have seen

widespread operational use as a result of their ease of

implementation and lower computational expense. Both

spectral bin models used in this study feature a coupled

polarimetric operator (Ryzhkov et al. 2011) to allow for

the calculation of polarimetric radar variables. This op-

erator treats particles as two-layer spheroids using the

T-matrix formulation put forth by Bringi and Seliga (1977)

and takes into account the size, shape, orientation, den-

sity, andmass liquid water fraction across the size spectrum

of all hydrometeors using well-known parameterizations

for quantities such as the dielectric constants, aspect ratios,

and canting angles of the rain and ice distributions [for

more details, see Ryzhkov et al. (2011)]. The two models

used are intended to be complementary; the HUCM can

explicitly calculate the development of hydrometeor PSDs

in a natural manner but is contingent upon the specific

initial environmental conditions, while the 1D-M must

have hydrometeor size distributions prescribed but can

model distributions whose parameters encompass the en-

tire range of possible values observed in nature.

a. One-dimensional melting hail model

The 1D-M is a one-dimensional Lagrangian model

that contains prescribed hail and graupel size distribu-

tions at the top of themodel domain, coincident with the

FIG. 1. Taylor diagram comparing the performance of retrievals at S band (red) and C band (blue) for (left) LWC

(gm23) and (right) R (mmh21), corresponding to Eqs. (1)–(10) and (11)–(20) in Table 1, respectively. The black

circle represents the characteristics of the observed disdrometer dataset. A line corresponding to a correlation of 0.9

is shown for improved readability.
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08C level, and follows them as they fall and melt. Melt-

ing, shedding of meltwater, differential sedimentation,

and drop breakup are included in the model, but pro-

cesses involving interactions between hailstones (e.g.,

collisions) or size bins are not included. Mass water

fraction is allowed to vary across the size distribution

and meltwater and ice cores are treated separately, with

the mass water fraction counted as LWC and the re-

maining ice core counted as IWC. Polarimetric radar

calculations were performed for both S band (l 5
11.0 cm) and C band (l5 5.45 cm). The top of themodel

domain was set at 4 km and the relative humidity was

100% with a constant lapse rate of 6.58Ckm21. All ice

was assumed to be solid (r 5 917 kgm23). Meltwater is

allowed to accumulate on the surface of ice particles and

begins to be shed once a critical threshold was reached.

For more about the 1D-M see Ryzhkov et al. (2013a).

Based on previous findings of biexponential distribu-

tions within hailstorms (Smith et al. 1976), initial ice

distributions were given by

N(D)5N
0g
exp(2L

g
D)1N

0h
exp(2L

h
D) , (23)

where N0g 5 8000m23mm21 and Lg 5 1.6mm21 for all

distributions. This graupel distribution was chosen to

replicate a Marshall and Palmer (1948) raindrop distri-

bution at the surface. Three size categories for the hail

portion of the distributions were used: small (10,Dmax#

25mm), large (30 , Dmax # 50mm), and giant (55 ,
Dmax # 75mm), withDmax varying in 5-mm increments.

The slope parameter Lh varied in increments of

0.05mm21 such that the product DmaxLh fell between

approximately 5 and 11, following the findings of

Ulbrich and Atlas (1982) and Cheng et al. (1985). The

intercept parameter was computed according to

N0h 5AL4:11
h following Cheng et al. (1985) and Federer

and Waldvogel (1975) with A varying from 50 to 800 in

increments of 50. Once the parameters of the graupel

and hail distributions were specified, they were com-

bined and treated as one encompassing ice distribution.

A total of 1952 unique ice distributions were modeled.

The parameters of these distributions are summarized in

Table 2.

b. Hebrew University Cloud Model

The HUCM is a state-of-the-art two-dimensional

nonhydrostatic Eulerian spectral binmodel (Khain et al.

2004, 2011; Ilotoviz et al. 2016). It contains 43 mass

doubling bins for a wide array of hydrometeor classes,

including a newly introduced ‘‘freezing drops’’ category,

and includes both dry and wet hail growth with liquid

water permitted above and below the 08C level (Phillips

et al. 2014, 2015). Hail and graupel are considered to be

separate, distinct classes. All hydrometeor distributions

evolve organically and do not need to be prescribed,

with all essential microphysical processes included. The

simulated storm was a hailstorm that struck Villingen-

Schwenningen, Germany, on 28 June 2006 and caused

significant damage (Noppel et al. 2010). The computa-

tional area was 120 km 3 19 km with a grid spacing of

Dx 5 300m and Dz 5 100m. Following Khain et al.

(2011), the initial cloud condensation nuclei (CCN)

concentration was set to 3000 cm23 in the lowest 2 km

and decreased exponentially with height above that,

representing polluted conditions. Radar variables were

computed every 1min at S band. For more details about

this storm and its modeling, see Noppel et al. (2010) and

Khain et al. (2011).

5. Evolution of rain retrieval biases

Figure 2 shows the predicted LWC and Z due to rain

throughout the life cycle of the simulated storm from the

HUCM with different shades of color for the quantity

logNw. It is immediately apparent that the relation be-

tween LWC and Z in rain is highly variable and changes

significantly over time.

At t 5 2460 s (Figs. 2a,e), raindrops have begun to

form atop the burgeoning updraft [as discussed in Khain

et al. (2013)], with LWCapproaching 1 gm23. Rapid size

sorting due to differential sedimentation occurs with this

initial rain, with most of the updraft featuring DSDs

skewed toward smaller drops with relatively low Z for

the given LWC. This is seen prominently in the Nw field

with very high values throughout the updraft indicative

of a categorical underestimation of LWC by the legacy

retrieval equation. This underestimation could neg-

atively impact efforts to achieve accurate initial

conditions and subsequently reduce spinup time in

convection-resolving models.

A very sharp transition to low values of Nw is seen on

the bottom fringe of the rain field, representing the size

sorted large drops that have fallen out almost instantly

upon formation. By t 5 2880 s (Figs. 2b,f), rain DSDs

have matured and are reasonably close to that predicted

by the legacy retrieval equation [Eq. (16)], although

distinct signatures for both the updraft (z5 5–8 km) and

TABLE 2. Summary of the range of parameters used in determining

the modeled hail distributions in the 1D-M.

Size Lh DLh Dmax DDmax A DA

(mm21) (mm21) (mm) (mm) — —

Small 0.25–1.10 0.05 10–25 5 50–800 50

Large 0.10–0.30 0.05 30–50 5 50–800 50

Giant 0.05–0.25 0.05 55–75 5 50–800 50
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size sorted drops (z 5 0–2km) still exist, resulting in a

range of over 40 dBZ for LWCs under 1 gm23.

Nearly 30min later at t 5 4620 s (Figs. 2c,g), the

LWC–Z relationship has changed significantly, with the

majority of rain found below the melting level and

dominated by themelting of hail and graupel. Relatively

low values of Nw are present in the entire region in-

dicative of large drops and a categorical overestimation

of LWC from the legacy retrieval equation by up to

500%. This is in agreement with previous studies (e.g.,

Ryzhkov et al. 2009) that found that melting graupel and

hail can be associated with high ZDR values. The pre-

dominance of rain generated from ice microphysical

processes persists throughout the storm’s life cycle once

it has matured. The microphysical characteristics of the

updraft have changed as well. By this time, a well-

formed ZDR column (e.g., Illingworth et al. 1987;

Kumjian et al. 2014) is seen within the updraft as large

raindrops are recycled into the updraft and undergo

time-dependent freezing. In this region, the LWC–Z

relationship is similar to that beneath the melting level.

Outside of and above the ZDR column, where raindrops

have frozen and converted to hail or the freezing drops

category, Nw rises sharply as the DSDs are once again

skewed toward smaller drops. Finally, at t 5 6480 s

(Figs. 2d,h), a new updraft centered around x 5 86km

and z 5 5 km begins to develop, with high values and a

very sharp gradient of Nw and an LWC–Z relationship

similar to that seen at t 5 2460 s. This occurs alongside

the former updraft with a ZDR column and widespread

rain generated from ice, highlighting the spatial vari-

ability in the LWC–Z relationship that may exist at any

given time in addition to the temporal variability.

It is clear that the variability in space and time of the

LWC–Z relationship must be taken into account to

achieve accurate retrievals. In all of these cases, the

stratification of the LWC–Z relationship with respect to

Nw is obvious, withNw providing a clear indication of the

bias of the legacy retrieval equation regardless of area or

stage of development.

6. Retrievals in rain and hail mixtures

a. Estimation of LWC

In practice, it is not known a priori what the relative

contributions of rain and hail are to the measured radar

variables, where each measurement is a function of all

hydrometeors contained in the volume. However, ef-

fective use of radar data for retrievals necessitates the

separate estimation of LWC and IWC within the vol-

ume. The difficulties in accurately retrieving LWC using

Z are exacerbated if hail is contained in the volume.Any

information about LWC from Z is completely lost if

even a small amount of hail is contained in the volume as

hail can completely dominate the returned Z and result

in a severe overestimation of LWC. Unfortunately, the

calculation of AH is corrupted in the presence of hail, so

other methods must be sought.

FIG. 2. Comparison of the legacy retrieval equation for rain [Eq. (16)] and LWC vs Z due to rain from the HUCM at (a),(e) t 5 2460;

(b),(f) t5 2880; (c),(g) t5 4620; and (d),(h) t5 6480 s. (top) The parameter space of the LWCvsZ relationship colored according to log10Nw

in comparison to the legacy retrieval equation. (bottom) The vertical cross section of log10Nw (shown only for LWC. 0.01 gm23) at each

time and LWC contoured at 0.1, 0.5, 1.0, 2.0, 3.0, and 4.0 gm23.

AUGUST 2016 CARL IN ET AL . 2989

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:37 PM UTC



The use ofKDP for retrievingRwas suggested decades

ago (e.g., Seliga andBringi 1978; Doviak andZrnić 1993;

Ryzhkov and Zrnić 1995; Zrnić and Ryzhkov 1996) in

order to improve quantitative precipitation estimation

by lessening biases introduced by Z contaminated by

hail (e.g., Aydin et al. 1995) and reducing sensitivity

to rain drop size distribution variability. The premise

of using KDP in rain–hail mixtures is based on the as-

sumption that it is immune to hail due to random

tumbling that results in isotropic scattering. This as-

sumption requires better justification for wet, melting

hail that may stabilize and reduce the randomness of the

tumbling.

Vertical profiles of IWC, LWC, and KDP for each hail

size category at both S and C band from the 1D-M are

shown in Fig. 3. Within the 1D-M, there are three

sources of hydrometeor mass: solid ice cores, the melt-

water that collects on the surface of each ice core, and

shed drops. Because modelers are generally concerned

with the bulk values of LWC and IWC within a volume

for retrievals, LWC was taken to be the sum of the

surface meltwater and shedwater, while the ice cores

were considered the IWC. While neither shedding nor

breakup is a source (or sink) of LWC, both can affect the

resultant polarimetric variables by modifying the rain

DSD. In general, KDP is positively correlated with the

total LWC. For all of the modeled distributions, the

large majority of graupel melts in the first 1.0–1.5 km

below the melting level and contributes almost all of the

LWC and KDP in the first kilometer below the melting

level, particularly for the distributions with larger hail

(Figs. 3b,c,e,f). For small hail, the smaller hailstones also

completely melt, resulting in a preponderance of large

raindrops (see Fig. 5 in Ryzhkov et al. 2013a). This

causes a slight enhancement of KDP at S band (Fig. 3a)

but a much larger enhancement at C band (Fig. 3d),

where median KDP values are 5.58km21 and reach as

high as 9.18km21 as resonance effects become pro-

nounced. Another slight enhancement can be seen be-

tween 2 and 3km for large and giant hail at S band

compared to C band (Figs. 3b,c). Shedding has not yet

begun at these heights, so the increasing values of KDP

are due to meltwater on the surface of hailstones. This

enhancement is notable at S band but almost non-

existent at C band (Figs. 3e,f), as also found for R(KDP)

retrievals in Ryzhkov et al. (2013b). These results are

somewhat in contrast to the ideas discussed in Hubbert

et al. (1998), who assumed that observed areas of en-

hanced KDP aloft necessitates the presence of shed

drops and aremore in line with the results of Loney et al.

(2002), whose in situ data supported a notable KDP

contribution from wet particles. With the exception of

the effect of resonance scattering at C band for small

hail, these deviations in the LWC–KDP relation are

relatively minor and KDP, being quite constrained and

immune to contributions from IWC, represents the po-

tential for a marked improvement for retrieving LWC

(performed in the following section) over the use of

LWC(Z) in rain–hail mixtures.

b. Estimation of IWC

The estimation of IWC within a mixture also presents

difficulties. One method to separate the contributions

from rain and hail is to assume the hail is approximately

isotropic (and therefore contributes negligibly to KDP),

estimate Z due to rain, ZLWC, from KDP, and then esti-

mate IWC via the remaining Z which is assumed to be

due to hail, ZIWC, according to

Z
IWC

5Z2Z
LWC

, (24)

whereZ,ZIWC, andZLWC are in linear units of mm6m23

(Balakrishnan and Zrnić 1990; Doviak and Zrnić 1993).

The ZLWC –KDP relations were derived from the dis-

drometer data following a procedure analogous to that

described in section 3 and are as follows:

Z
LWC

5 8:4063 104(K
DP

)1:168, (l5 11:0 cm), (25)

Z
LWC

5 2:7903 104(K
DP

)1:097, (l5 5:33 cm). (26)

These relations are in good agreement with relations

that can be derived from parameters reported in Doviak

and Zrnić (1993) and Ryzhkov et al. (2013b) that im-

plicitly assumed the standardZLWC–R relationZLWC5
200R1.6 (Marshall and Palmer 1948), although our ex-

ponents are a bit lower. Both the Doviak and Zrnić

(1993) and Ryzhkov et al. (2013b) sets of relations were

also tested using the following procedure and achieved

very similar results to Eqs. (25) and (26) (not shown).

Figure 4 shows median values from this method—

calculating ZLWC from KDP using Eqs. (25) and (26),

finding ZIWC from Eq. (24), and retrieving IWC from

ZIWC using Eq. (21)—applied at both S band (Figs. 4a–e)

and C band (Figs. 4f–j) for all size distributions from

the 1D-M. Despite the good correlation between LWC

and KDP, there is no apparent functional relation be-

tween the retrievedZIWC and the actual IWC (Figs. 4e,j,

in black). Consequently, the retrieved IWC using the

legacy retrieval equation for hail (Figs. 4e,j, in color)

exhibits very large errors (RMSEs of 2.93 gm23 at S

band and 1.64 gm23 at C band) with almost no skill

(Pearson correlations of 20.27 and 20.02 at S and C

band, respectively). Sources of error in this technique

could include the assumption that KDP has only a neg-

ligible contribution from hail, the ZLWC– KDP relation,

and the ZIWC–IWC relation. The relationship between
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LWC and KDP is in general quite immune to hail and

robust (see previous section) although not perfect. Be-

yond the possible aforementioned slight impacts of ac-

cumulated meltwater at larger hail sizes at S band and

possibly resonant effects from the melting of small hail

at C band, the small but nonzero KDP at 4 km above

ground level (’0.088km21) where only ice exists results

in an estimated ZLWC of approximately 35 dBZ. This is

quite small in relation to the total Z, however, and

should not introduce significant error into the retrieved

FIG. 3. Vertical profiles of median IWC (gm23, dotted black line), LWC (gm23, solid black line), and KDP (8 km
21) at (a)–(c) S-band

(solid red line) and (d)–(f) C-band (solid blue line) for (left to right) small, large, and giant hail from the 1D-M. The LWC andKDP due to

graupel alone at each wavelength are also shown in dashed black and red–blue lines, respectively. The shaded regions for total LWC and

total KDP depict the interquartile range of the distributions.
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ZIWC. The ZLWC–KDP relations, Eqs. (25) and (26), are

robust and quite constrained, with RMSEs of 1.34 and

1.09 dBZ at S band and C band, respectively, for all

values of Z. This RMSE increases to 3.07 dBZ at C band

for ZLWC greater than 40 dBZ due to the aforemen-

tioned resonance effects though the relationship is still a

strong one. Since the contributions to Z are due to only

rain and melting hail and graupel, the estimates of ZIWC

seem plausible and the significant errors in retrieved

IWC are indeed due to the use of the legacy retrieval

equation for hail.

This conclusion was examined in further detail in

Fig. 5, in which the model IWC is plotted against the

retrievedZIWC for all of the distributions from the 1D-M

and compared to the legacy hail retrieval relation. In

addition to radar wavelength and maximum hail size

within the volume (where resonance effects may begin

to affectZmeasurements at larger sizes, even at S band),

the strongest dependency is seen with respect to height

below the melting level. For a decrease in IWC of two

orders of magnitude, ZIWC can remain nearly constant

(e.g.,ZIWC5 60 dBZ corresponding to 5.5 gm23 of IWC

near the melting level to nearly no IWC near the sur-

face). At both wavelengths, the use of the legacy re-

trieval equation results in a consistent negative bias in

and above the melting layer and a positive bias below

FIG. 4. Vertical profiles ofmedian (a),(f) LWC (gm23), (b),(g)KDP (8 km
21), (c),(h) retrievedZLWC (dBZ) usingEqs. (25) and (26), (d),

(i) retrieved ZIWC (dBZ) using Eq. (24), and (e),( j) IWC (black) and retrieved IWC (color) (gm23) using Eq. (21) from the 1D-M. The

(top) S-band and (bottom) C-band calculations are shown in red and blue, respectively. The shaded regions depict the interquartile range

of the distributions.
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the melting layer, qualitatively similar to the findings

for rain.

Figure 6 is a conceptual model showing the relative

contributions to IWC and ZIWC at both S and C band

from mixed-phase particles of different sizes. Pro-

portional to the thirdmoment of the ice size distribution,

the majority of the IWC is concentrated in the smaller

sizes, and is particularly the case when significant

amounts of graupel are present, as is necessarily the case

for our results given the biexponential distributions

modeled using the 1D-M. In contrast, ZIWC is approxi-

mately equal to the sixth moment of the distribution and

FIG. 5. IWC vs retrieved ZIWC [via Eqs. (25) and (26)] for (a) S band (red) and (b) C band

(blue), with separate markers for small, large, and giant hail. The legacy retrieval equation

[Eq. (21)] is shown in black, and points are shaded according to their height below the

melting level.
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has a much broader maximum contribution at larger

sizes. By the time the ice reaches the surface, all hail and

graupel sizes below a certain size (represented by the

shaded regions) have completely melted, representing a

loss of the majority of the IWC. However, their contri-

bution to ZIWC was relatively low, and the larger hail-

stones that are the dominant contributors toZIWC do not

contribute very much to the IWC. This also demon-

strates the impact of the maximum hail size in the vol-

ume, which results in a decrease in ZIWC while hardly

affecting IWC. Additionally, the contribution toZIWC at

C band is higher than at S band for small hail sizes and

smaller than at S band for large hail sizes due to reso-

nance effects playing a role at smaller hail sizes at C

band (see Fig. 10 in Ryzhkov et al. 2013a). All of these

factors result in a very indirect relationship between

IWC and ZIWC.

Based on these results, it is clear that radar wave-

length, maximum hail size, and particularly the height

below the melting layer of the radar resolution volume

in question must be taken into account in order to re-

trieve accurate estimates of IWC. To demonstrate how

the IWC(Z) relation changes with wavelength, height,

and maximum hail size, power-law regressions of the

form ZIWC 5 a(IWC)b were found at 500-m intervals

below the melting level from the 1D-M results and are

shown in Fig. 7. Distance below the melting level plays

the dominant role over radar wavelength and maximum

hail size, with the largest changes occurring in the first

2.0 km below the melting level before leveling off and

becoming quite steady. Note that these coefficients are

only valid for the atmospheric conditions prescribed in

the 1D-M, although it is reasonable to expect that sim-

ilar conclusions would hold for most atmospheric pro-

files beneath the melting layer representative of

environmental conditions conducive to convection and

hail production. These results are reflected in the pro-

posed hail size discrimination algorithm (HSDA;

Ryzhkov et al. 2013b), which seeks to identify the

maximum hail size within a radar resolution volume by

using the polarimetric variables in an analogous manner

to the operational HCA. In agreement with our results,

the membership functions are constant below 3km be-

low the melting level. Knowledge of the maximum hail

size in a volume, radar wavelength, and height with re-

spect to the melting level could then be used to select a

more appropriate retrieval relation for more accurate

estimates of IWC.

To further strengthen the justification for the esti-

mation of ZIWC presented above, the relationship be-

tween IWC and ZIWC partitioned by height from the

HUCM is shown in Fig. 8. Model output was accumu-

lated over a 30-min period starting from when hail first

reached the surface in order to capture the variability of

IWC(Z) relations throughout the developing and ma-

ture stages of the storm at each height interval. Here, as

before, IWC represents hail and graupel together due to

the often abrupt conversion between the two categories

in some cases in the HUCM microphysics [due to

graupel reaching a size or density threshold; see Ilotoviz

et al. (2016) for more details] as well as the fact that

many microphysics schemes do not explicitly treat

graupel and hail separately. This sudden transition is

easily seen in Fig. 9a at z 5 4–6km.

The results seen in Fig. 8, for which ZIWC is calculated

explicitly and rigorously for each hydrometeor class,

agree quite well with the retrieved ZIWC from the 1D-M

in Fig. 5. The legacy IWC(Z) relationship generally

performs poorly above z 5 4 km, where graupel domi-

nates from the riming of snowflakes aloft before quickly

melting below the melting level or converting to hail

(Fig. 9a). For a given value ofZ, graupel exhibits a much

higher IWC than is predicted by the legacy hail retrieval

equation due primarily to its higher concentration than

theN0h assumed in the hail retrieval equation, as well as

having a lower density. The use of the legacy retrieval

equations for hail will thus result in a severe un-

derestimation of IWC aloft of up to 3 gm23 through a

large depth of the storm (Fig. 9g). A separate graupel

retrieval relation should instead be considered.

At and below the melting level, the same biases found

from the 1D-M are seen from the HUCM data. The use

of the wet hail retrieval equation [Eq. (22)] does a better

job than the dry hail retrieval equation [Eq. (21)], al-

though both relations fail to capture the full variability

FIG. 6. Conceptual model of the normalized IWC (black) and Z

(red, S band and blue, C band) as a function of size. The shading

represents the contributions that may be removed due to total

melting.

2994 MONTHLY WEATHER REV IEW VOLUME 144

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:37 PM UTC



of the IWC(Z) relation across all heights (Fig. 8) and

would result in a positive bias in retrieved IWC below the

melting level [e.g., Fig. 9g for Eq. (21)]. As the Z calcu-

lated for hail in the HUCM consists of both the ice core

and surface meltwater, there is an increase in Z owing to

the increase in the dielectric constant of hail as meltwater

accumulates on the surface. However, the primary source

of error in using a static hail retrieval equation comes

from the precipitous loss of IWC as hail falls and melts.

This is easily seen in Figs. 9b–e, where graupel and small

hailstones melt very quickly into rain below the melting

level while the largest hail, which dominates the ZIWC,

does not losemuchmass. The hail mass distributions tend

to become relatively stable about 2km below the melting

level (Figs. 9e,f) in good agreement with the 1D-M. Al-

though this example is from an Eulerian frame of refer-

ence at a given time and therefore is not following the

same volume of hail in a Lagrangian sense, the results are

broadly consistent with the 1D-M as well as conceptual

expectations of the impact of melting hail on Z.

7. Summary and conclusions

Radar data are the only source of hydrometeor in-

formation available for assimilation on the scale of

convection-resolving models, which have seen a surge in

development in the past two decades and will play an

increasingly large role in the warning decision process of

forecasters in the future. Both forward operators and

retrieval equations can be used to accomplish this but

often require many limiting assumptions.

The goal of this study was to investigate the utility of

the most simplified versions of commonly used retrieval

equations for LWC in pure rain and LWC and IWC

within a rain–hail mixture and the consequences of

making such assumptions. These simplified retrieval

equations for rain, hail, and snow are derived in detail,

and their assumptions and limitations are discussed.

FIG. 8. Median ZIWC for binned IWC (hail 1 graupel) from the

HUCM partitioned by height (different colors) for bins with 10 or

more points. IWC was binned at every 0.02 gm23 between 0.0 and

0.1 gm23 and at every 0.1 gm23 between 0.1 and 5.0 gm23. The

shaded regions depict the interquartile range of the distributions.

The legacy retrieval equations for dry [solid black; Eq. (21)] and

wet hail [dashed black; Eq. (22)] are also shown. The melting level

is at approximately z 5 3.5 km.

FIG. 7. Regression coefficients from the 1D-M of the formZIWC5 a(IWC)b for (left) a and (right) b, whereZIWC is

in linear units of mm6m23 and IWC is in gm23 for small, large, and giant hail at 500-m intervals below the melting

level for S and C band.

AUGUST 2016 CARL IN ET AL . 2995

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:37 PM UTC



FIG. 9. HUCMoutput for t5 4260 s showing (a) contours of rain (green), hail (red), and graupel (blue) mass every

0.5 gm23 beginning at 0.5 gm23. (b)–(f) Mass distributions of rain (green), hail (red), and graupel (blue) at 1-km

intervals in the vertical (from 4.5 to 0.5 km, respectively) at x 5 53.1 km and with the IWC and ZIWC of the distri-

butions shown. (g) The bias in retrieved IWC (gm23) when using the legacy retrieval equation [Eq. (21)]. The 08C
isotherm is shown in black in (a) and (g) and the stars in (a) denote the locations of the (b)–(f) sampled mass

distributions.

2996 MONTHLY WEATHER REV IEW VOLUME 144

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:37 PM UTC



Two spectral bin models are used in the study: a one-

dimensionalmelting hailmodel, and the two-dimensional

HebrewUniversity CloudModel. Themelting hail model

is used to simulate the polarimetric radar characteristics

of 1952 different melting hail size distributions for both S

and C band. TheHebrewUniversity CloudModel is used

to simulate a hailstorm from the start and to get a qual-

itative look at how the retrieval equations perform tem-

porally and spatially. The general conclusions are as

follows:

1) The relation between LWC and Z for rain varies

significantly and is not constant in space or time,

corroborating the results of many previous studies

(e.g., Atlas and Chemla 1957; Battan 1973; Austin

1987). The use of the legacy retrieval equation for

rain results in a systematic underestimation of LWC

in developing updrafts and an overestimation of

LWC in rain derived from melting hail and graupel,

the dominant source of rain below the melting level

in midlatitude convection. Size sorting processes will

also limit the accuracy of the legacy retrieval equa-

tion. The use of Nw, which can be estimated from Z

and ZDR, offers clear insight into where and how

severely the legacy retrieval equation will be biased.

2) In pure rain at both wavelengths, LWC(Z) exhibits

the largest errors while incorporating Nw results in

the best retrievals. Estimates of R are also superior

when using Nw at S band. However, Nw suffers from

reduced resolution when compared to other radar

variables and may be more difficult to estimate

accurately at C band due to possible attenuation

affects.With that inmind, the best retrievals ofR and

LWC at S band are from AH, which can be obtained

with knowledge of the radar wavelength and a

background temperature field from a model, while

at C band the best retrievals of R and LWC are from

KDP. Both AH and KDP have the additional advan-

tage over Z of being immune to radar miscalibration

and partial beam blockage.

3) Within rain–hail mixtures, the LWC and IWC must

be estimated separately. All information content

about LWC in Z using the legacy retrieval equation

is lost if even a small amount of hail is present in

the volume. The calculation of AH also fails in the

presence of hail, so the use of KDP to estimate the

LWC in the presence of hail is recommended for

both S and C band.

4) Once the LWC within a rain–hail mixture is known,

the ZIWC can be estimated. However, the legacy

retrieval equation for hail may feature large errors,

where neither the dry or wet forms of the legacy hail

retrieval equation capture the full variability of the

parameter space. A categorical underestimation of

IWC exists above the melting level where lower-

density graupel dominates the IWC, while a consis-

tent overestimation of IWC below the melting level

exists as Z is dominated by the largest hailstones

while the bulk of the IWC comes from the smallest

hailstones and graupel, which quickly melt below the

melting level. The radar wavelength, maximum hail

size, and especially the height below themelting level

must be taken into account when attempting to

retrieve the IWC.

Much remains to be done in the realm of polarimetric

radar data assimilation, with the field still in its infancy

and with the best way to assimilate this data remaining

an active area of research. While more accurate esti-

mates of LWC and IWC are desirable, they still repre-

sent only one moment of the particle size distributions

and once assimilated will suffer from the same limita-

tions exhibited when using single-momentmicrophysics.

As such, future work will seek to investigate the impact

of these improved hydrometeor retrievals on model

forecasts. Beyond the rain–hail mixtures investigated

here, more also needs to be done on the utility of re-

trievals for other hydrometeor types such as snow, ice

crystals, etc. as well as their associated impacts.

A new paradigm in radar data assimilation is envi-

sioned in which the benefits of polarimetry are fully

capitalized on to improve storm-scale analyses and al-

leviate assumptions often used. For example, results

from the polarimetric HCA could be used to aid in de-

termining the dominant hydrometeor class in a volume

and subsequently which retrieval equation to use instead

of relying on empirical rules employing model back-

ground temperature. In addition to improving the

quality of hydrometeor retrievals and helping to differ-

entiate rain and hail [as extreme errors in LWC(Z) can

result if a rain–hail mixture is assumed to be rain], dual-

polarization data are also useful for detecting areas of

size sorting through the ‘‘big drops’’ category in the

operational HCA (Park et al. 2009). Additionally, po-

larimetric signatures often have connections to thermal

and dynamical fields. For example, positive correlations

have been shown to exist between ZDR columns and

updraft strength (Picca et al. 2010; Kumjian et al. 2014;

Snyder et al. 2015) and between ZDR arc characteristics

and storm relative helicity within supercells (Kumjian

andRyzhkov 2009). Similarly, polarimetric signatures of

hydrometeor phase changes (e.g., Kumjian et al. 2012,

Kumjian and Ryzhkov 2010) should be investigated for

their information content about latent heating to aid

in reducing spinup time and obtaining more accurate

storm-scale analyses.
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